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Abstract: In this paper, an optimized contrast enhancement method combining global and local 
enhancement results is proposed to improve the visual quality of infrared images. Global and local 
contrast enhancement methods have their merits and demerits, respectively. The proposed method 
utilizes the complementary characteristics of these two methods to achieve noticeable contrast 
enhancement without artifacts. In our proposed method, the 2D histogram, which contains both 
global and local gray level distribution characteristics of the original image, is computed first. Then, 
based on the 2D histogram, the global and local enhanced results are obtained by applying 
histogram specification globally and locally. Lastly, the enhanced result is computed by solving an 
optimization equation subjected to global and local constraints. The pixel-wise regularization 
parameters for the optimization equation are adaptively determined based on the edge information 
of the original image. Thus, the proposed method is able to enhance the local contrast while 
preserving the naturalness of the original image. Qualitative and quantitative evaluation results 
demonstrate that the proposed method outperforms the block-based methods for improving the 
visual quality of infrared images. 

Keywords: 2D histogram; histogram specification; optimization equation; contrast enhancement. 
 

1. Introduction 

Recent years, infrared imaging systems have been extensively applied in military and civilian 
areas such as night version, video surveillance, driver assistance, fire detection, and disease diagnosis 
[1–3]. In these areas, infrared imaging has broad application prospects due to its ability to reflect the 
thermal radiation distribution of the scene, which is impossible for visual imaging. However, 
compared with visual images, there are many inherent drawbacks in infrared images. Among these 
drawbacks, the low contrast and low resolution are the key factors that reduce the visual quality of 
infrared images [4]. Therefore, contrast enhancement is essential for improving the visual quality of 
infrared images. 

Contrast enhancement methods have been studied for decades, and they can be categorized into 
two families depending on the area adopted for defining the enhancement method such as global 
contrast enhancement (GCE) and local contrast enhancement (LCE) [5]. The GCE methods aim to 
enhance the overall contrast by finding a mapping function and considering the characteristics of the 
entire image. On the contrary, LCE methods try to enhance the local contrast of each area by using 
different mapping functions, which are correlated to the characteristics of the local areas.  

As for the GCE methods, histogram equalization (HE) [6] is one of the most well-known methods. 
Due to the low computational complexity and effective contrast enhancement capability, HE has been 
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widely applied to improve the visual quality of images. However, the enhanced results of HE may 
cause serious over-enhancement artifacts when there are large, homogeneous regions in infrared 
images [7]. To deal with this problem, some improved HE methods have been investigated. Among 
these methods, the plateau histogram equalization (PHE) [8,9], double plateaus histogram 
equalization (DPHE) [10], and adaptive double plateaus histogram equalization (ADPHE) [11] try to 
introduce one or two proper thresholds to avoid over-enhancement. Besides these plateau-based 
methods, some other methods such as the brightness preserving bi-histogram equalization (BBHE) 
[12], dualistic sub-image histogram equalization (DSIHE) [13], recursive mean-separate histogram 
equalization (RMSHE) [14], adaptive histogram segmentation (AHS) [15], and adaptive histogram 
partition (AHP) [16] address the over-enhancement by adaptively dividing the histogram into two or 
more partitions. Other methods such as the histogram modification framework (HMF) [17] and 
histogram specification (HS) [18] also gives better performance for avoiding over-enhancement. In 
summary, the GCE methods aim to make a trade-off between avoiding over-enhancement and 
enhancing the contrast as much as possible [15]. Although the GCE methods naturally improve the 
contrast with low computational complexity and good light order preservation, the single mapping 
function ignores the local contrast characteristics of the image, which limits the performance of GCE 
methods. 

The LCE methods try to enhance the local contrast by taking the characteristics of local areas 
into consideration. One effective approach is to divide the input image into multiple sub-blocks and 
then enhance the contrast of each sub-block respectively. For instance, this includes the contrast 
limited adaptively histogram equalization (CLAHE) [19] and partially overlapped sub-block 
histogram equalization (POSHE) [20]. The CLAHE method divides the input image into multiple 
non-overlapped sub-blocks and the histogram of each sub-block is clipped and redistributed to limit 
the contrast. The bilinear interpolation is also introduced to prevent the blocking artifacts. The 
POSHE method prevents the blocking artifacts by dividing the input image into a partially 
overlapped sub-block and the enhanced results of the pixels in overlapped areas are computed based 
on the correlated sub-blocks. By improving the CLAHE method with a new redistribution 
mechanism and local contrast enhancement, the balanced CLAHE and contrast enhancement (BCCE) 
[21] performs better than CLAHE in terms of visual quality improvement. The adaptive trilateral 
contrast enhancement (ATCE) [22] utilizes the double plateau histogram equalization for the local 
contrast enhancement and then manipulates the sharpness and intensity based on the extracted 
feature of the input image. Nevertheless, these methods may still suffer from blocking artifacts and 
over-enhancement in homogeneous regions. In order to take the content of each sub-block into 
consideration, the mechanisms for calculating the mapping functions of the sub-blocks can vary 
along with the local content. Thus, the adjacent-blocks-based modification for local histogram 
equalization (ABMHE) [23] and local gradient-grayscale statistical feature (LGGSF) [24] categorize 
the sub-blocks into two or three categories. For each category, the particular mechanism is applied to 
calculate the mapping functions of the sub-blocks. Besides these block-based methods, other LCE 
methods called unsharp masking (UM) based methods [25–29] decompose the input image into a 
base layer and a detail layer by a filter. These two layers are enhanced separately and then composited 
to get the final enhanced image. Some other methods introduce the retinex theory [30,31] and the 
wavelet transform [32,33] to realize the contrast enhancement of infrared images. The LCE methods 
have better performance for improving the local contrast, but they may cause unnatural and over-
enhanced results in some local areas. 

As described above, the GCE and LCE methods have complementary characteristics. It is 
necessary to study a new contrast enhancement method that combines the metrics of both methods 
[5,34]. These methods are designed for the visual color images while there are no color components 
and the contrast is poor in the infrared images. Therefore, they are not suitable for the infrared images. 
In this paper, based on the 2D histogram, an optimized contrast enhancement method combining the 
merits of global and local methods is proposed to improve the visual quality of infrared images. First, 
the 2D histogram, which contains both global and local gray level distribution characteristics of the 
input image, is computed according to the definition in Reference [35]. Then, based on the histogram 
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specification, the global and local contrast enhancement are conducted. The global mapping function 
is obtained by applying a histogram specification to the clipped and redistributed 2D histogram. The 
local mapping functions are also computed by applying histogram specification to each row of the 
2D histogram and then updated based on the global mapping function. The GCE and LCE results are 
computed based on the global mapping function and local mapping functions. Lastly, an objective 
function is conducted with global and local constrained conditions and the optimized enhancement 
result is obtained through the optimization approach. Thus, the final enhanced image is possible to 
make a compromise between the merits of global and local enhancements. The main contributions of 
our paper are: 1) The 2D histogram is utilized to realize both global and local contrast enhancement. 
2) The global enhancement result is obtained by applying the histogram specification to the clipped 
2D histogram. 3) The local mapping functions are computed by applying the histogram specification 
to each row of the 2D histogram. The local enhancement result is obtained based on the local content 
information and the corresponding mapping functions. 4) The desired image is obtained by finding 
a solution for the quadratic optimization function, which contains both global and local constrained 
conditions. For the local content adaptation, the edge information of the input image is also taken 
into consideration. 

The remainder of this paper is organized as follows. In Section 2, we first make a brief review of 
the 2D histogram. In Section 3, we describe the proposed method in detail. Section 4 gives the 
experimental results and Section 5 concludes the paper. 

2. Review of the 2D Histogram 

The concept of the 2D histogram was first proposed in Reference [35] to improve the contrast of 
visual images. In that paper, the 2D histogram ( , )h i j  was defined to indicate the joint distribution 
of two spatially adjacent pixels with grey levels i  and j , respectively. For a given input image X  

of size ×M N  pixels and dynamic range   ,d ux x , i.e., { }= ≤ ≤ ≤ ≤ ∈( , ) 1 ,1 , ( , )X x m n m M n N x m n  

and ∈( , ) [ , ]d ux m n x x . The main objective of the contrast enhancement methods is to generate an 

enhanced image Y  of the same size as X , i.e., { }= ≤ ≤ ≤ ≤ ∈( , ) 1 ,1 , ( , )Y y m n m M n N y m n , which 

has better visual quality than X  and ∈( , ) [ , ]d uy m n y y . The dynamic range of Y can be stretched or 

compressed [35]. For an 8-bit image, the dynamic range of the enhanced image is   0,255  to take 

full use of the entire dynamic range. For the input image, assume that the dynamic range is  −  0, 1L , 

and = 256L for the 8-bit image, which is the number of distinct gray-levels of the image. The 2D 
histogram can be expressed as the equation below.  

{ }= ≤ ≤ − ≤ ≤ −( , ) 0 1,0 1H h i j i L j L  (1) 

where ( , )h i j  is the number of the occurrences of gray level j  in the neighborhood of gray level i  
and ( , )h i j  is computed as the equation below. 

φ
= = =− =−

= + +∑∑∑ ∑ ,
1 1

( , ) ( ( , ), ( , ))
M N r r

i j
m n k r l r

h i j x m n x m k n l  (2) 

where r  is an integer introduced to determine the square + × +(2 1) (2 1)r r  neighborhood around 
each pixel. The binary function φ , ( , )i j u v  is used to identify the occurrence of the gray levels i  and 

j  at the spatial square neighborhood and is defined as the equation below.  

φ
 = =

= 


,

1,
( , )

0,i j

if u i and v j
u v

otherwise
 (3) 

In order to apply the 2D histogram to the calculation of global mapping function, the 2D 
histogram is redefined in Reference [36] as follows.  
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φ
= = =− =−

= + + − +∑∑∑ ∑ ,
1 1

( , ) ( ( , ), ( , ))( 1)
M N r r

i j
m n k r l r

h i j x m n x m k n l i j  (4) 

In this scenario, the initial 2D histogram is weighted by the absolute-valued differences ( )− +1i j . 

Therefore, higher weight is assigned to the 2D histogram when the difference between i  and j  is 
large. The 2D histogram based global contrast enhancement method gets better performance for 
improving the visual quality of visual images. However, due to the low contrast of infrared images, 
the global contrast enhancement is not enough for the visual quality improvement of infrared images. 

3. Proposed Method 

In this section, the proposed method is described in detail, which includes histogram 
specification-based global and local contrast enhancement and the optimized enhancement result 
combining both global and local enhanced results. The 2D histogram is utilized in our proposed 
method to achieve both global and local contrast enhancement. Figure 1 shows the overall block 
diagram of the proposed method. 
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Figure 1. The overall block diagram of the proposed method. 

Usually, the data width of the raw images captured by an infrared imaging system is 14-bit and 
the histogram of the raw image is sparse. This means that most of the gray levels take on no pixel. 
Therefore, we pre-process the raw images by removing the gray levels that take no pixel and linearly 
mapping the remaining ordered gray levels to  − 

80,2 1 . In order to obtain both global and local 

enhancement results based on the 2D histogram, the 2D histogram should contain both global and 
local gray level distribution characteristics of the input image. Thus, in our proposed method, the 2D 
histogram is calculated based on the definition in Equation(2). 
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Figure 2. (a) The input infrared image and (b) its 2D histogram using a ×5 5  neighborhood. The 
values of ( , )h i j  are shown in a logarithmic scale. 

Take an infrared image for reference. Figure 2 shows the reference infrared image and its 
normalized 2D histogram using a ×5 5  neighborhood. There are more dark regions than bright 
regions. Therefore, the 2D histogram has larger values located at lower gray values. There are also 
some homogeneous regions in the image. The neighbors of each pixel in these homogeneous regions 
take on very similar gray levels, which result in higher peaks at the diagonal or near-diagonal element 
of the 2D histogram. As can be observed in Figure 2(b), the 2D histogram is diagonal symmetry. This 
is due to the mutual relation between each pixel and its neighbors. 

3.1. Global Enhancement 

Global enhancement methods aim to obtain an optimized mapping function to map the input 
image to an enhanced one for better visual quality. In order to obtain the mapping function, the 
histogram specification is utilized in this case. First of all, to improve the global contrast and avoid 
over-enhancement, the 2D histogram is clipped by an adaptively adjusted clip point [37] as shown 
below.  

∗  ≤
=  >

( , ) ( , )
( , )

( , )
h i j h i j clip

h i j
clip h i j clip

 (5) 

where the clip  is computed by the formula below. 

β+
= +

2
max

2

(2 1) (1 )
100

MN rclip H
L

  

In this case, maxH  is the maximum value of the 2D histogram while β  is the clipping factor and is 
set to be 0.2 for the experiments in this paper. The exceeded pixels are then equally redistributed and 

the updated 2D histogram { }∗ ∗= ≤ ≤ − ≤ ≤ −( , ) 0 1,0 1H h i j i L j L  is normalized according to the 

equation below.  

− −
∗ ∗ ∗

= =

= ∑∑
1 1

' 0 ' 0
( , ) ( , ) ( , )

L L

i j
h i j h i j h i j  (6) 

Based on the modified 2D histogram, the corresponding cumulative distribution function is written 
as the equation below.  
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−
∗

= =

  = = = − 
  

∑∑ 

1

0 0
( ) ( , ) 0,1, , 1

i L

G G
k j

C c i h k j i L  (7) 

Then, as for the desired 2D histogram, it is supposed to satisfy the following uniformly distributed 
probability density function [36].  

 
= = ≤ ≤ − ≤ ≤ − 
 2

1ˆˆ ( ', ') 0 ' 1,0 ' 1H h i j i L j L
L  

(8) 

Similarly, the corresponding cumulative distribution function of the desired 2D histogram is 
computed as the equation below. 

−

= =

  = = = − 
  

∑∑ 

' 1

0 0

ˆˆ ˆ ( ') ( , ) ' 0,1, , 1
i L

G G
k j

C c i h k l i L  (9) 

Combining Equations (6) and (8), according to the definition of the histogram specification [38], the 
mapping function aims to map the gray level i  of the 2D histogram to the gray level 'i  of the 
desired 2D histogram and satisfy the equation = ˆ( ) ( ')G Gc i c i . Therefore, the mapping function is 
computed according to the equation below.  

∈ −

 = = − = − 
 



' {0 ,1, , 1}
ˆ( ) arg min ( ) ( ') 0,1, , 1G G G G

i L
T t i c i c i i L  (10) 

Using Equation (9), the gray levels of the input image X  are transformed to the corresponding 
gray levels of the enhanced output image. Thus, the global enhancement result GY  is computed by 
the formula below.  

{ }= = ≤ ≤ ≤ ≤( , ) ( ( , )) 1 ,1G G GY y m n t x m n m M n N  (11) 
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Figure 3. (a) This is the global mapping function and (b) is the global enhancement result of the input 
image in Figure 2(a). 

The resultant global mapping function and the enhanced image are shown in Figure 3(a) and 
Figure 3(b). As observed in Figure 3(b), the global enhanced result gets a natural appearance and 
improves the contrast without any artifacts. However, there is no improvement in terms of local 
contrast. Therefore, the enhancement performance is limited. 

3.2. Local Enhancement 
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Local enhancement methods aim to enhance the contrast of each local area by using different 
mapping functions, which are computed based on the characteristics of the local areas. In this section, 
the local mapping function iT  is defined to be the mapping function of the neighbors of pixels whose 
gray level is i . The histogram specification algorithm is utilized again to compute the local mapping 
function iT . As for the local histogram, let { }−

=
= = = −∑ 

1

0
( ) ( , ) ( , ) 0,1, , 1L

i i j
H h j h i j h i j j L  be the 

normalized one row of the 2D histogram H  with index i , which indicates the gray level 
distribution of the neighbors of each pixel whose gray level is i  in the input image. Then, the 
corresponding cumulative distribution function is computed by the formula below.  

=

=

  = = = − 
  

∑ 

0
( ) ( ) 0,1, , 1

k j

i i i
k

C c j h k j L  (12) 

As for the desired local histogram, similar to the desired 2D histogram, we assume that the 
desired local histogram satisfies the following Gaussian distribution probability density function [18]. 

{ }= = −' '
ˆˆ ( ') ' 0,1, , 1i iH h j j L  (13) 

where σ

πσ

−
−

=

2

2

( ' ')
2

'
1ˆ ( ')

2

j i

ih j e  

In addition, σ  is the weighted average value of the standard deviation of each row in the 2D 
histogram. The desired local histogram is also normalized by −

=
= ∑ 1

' ' '' 0
ˆ ˆ ˆ( ') ( ') ( ')L

i i ij
h j h j h j . Then, we 

can compute the corresponding cumulative distribution function by using the formula below.  

=

  = = = − 
  

∑ 

'

' ' '
0

ˆˆ ˆ ( ') ( ) ' 0,1, , 1
j

i i i
k

C c j h k j L  (14) 

Once again, based on the histogram specification, the original local mapping function ′iT  is 
computed according to the equation below.  

∈ −

 
′ ′= = − = = − 

 

'
' {0 ,1, , 1}

ˆ( ) arg min ( ) ( ') ', 0,1, , 1i i i i
j L

T t j c j c j i i j L  (15) 

An indisputable fact is that each local area is just a small part of the whole image. Therefore, not 
only the local areas but also the whole image have to be taken into consideration when enhancing the 
local contrast. This inspires us to update the original local mapping based on the global mapping 
function. When computing the optimal local mapping function, both local and global mapping 
functions have to be taken into account. To satisfy this condition, the preferred option is to find an 
optimal mapping function iT , which is closer to GT  and ensure the small residual ′−i iT T . The 

optimal local mapping function iT  can be treated as the solution to a bi-criteria optimization 
problem. If the square of the Euclidean norm is used for the problem, the optimal local mapping 
function iT  is computed by using the equation below.  

α ′= − + −
2 2

2 2
arg mini G i

T
T T T T T  (16) 

where T  is just an intermediate variable while α  is a regularization parameter and varies over 
) ∞0, . The solution to this quadratic optimization problem is shown below. 

α
α α

    ′= +   + +   

1
1 1i G iT T T  (17) 

Therefore, the optimal mapping function iT  turns out to be a weighted average of GT  and ′iT . 

Simply by varying α , iT  takes on the optimal trade-off value between the two objectives. When 
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α = 0 , iT  is equal to the global mapping function GT . Therefore, the local enhancement result tends 

to be the same as the global enhancement result. However, as α  goes to infinity, iT  converges to 

the original local mapping function ′iT . Thus, the local enhancement result usually results in over 
enhancement of the local contrast. 

Since the local mapping function iT  aims to enhance the contrast of the neighbors of the pixels 
whose gray level is i , each pixel in the input image is conversely one element of the neighbors of the 
pixels that belong to its neighborhood. Therefore, the local enhancement result of each pixel should 
be the average of the enhanced results using the mapping function of its neighbors. The local 

enhancement result { }= ≤ ≤ ≤ ≤( , ) 1 ,1L LY y m n m M n N  of the input image is computed by the 

equation below.  

+ +
=− =−

= ×∑ ∑ ( , )
1( , ) ( ( , )) ( , )

r r

L x m k n l r
k r l rr

y m n t x m n w k l
W

 (18) 

where = ∑∑ ( , )r rW w k l  and ( , )rw k l  is defined as the element of the Gaussian weight matrix. The 

expression of ( , )rw k l  is shown below. 

π
− +=

2 2( ) 21( , )
2

k l
rw k l e   
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Figure 4. The local enhancement result of the input image in Figure 2(a) with different values of α  
(first row) and the corresponding local mapping functions 50T , 100T , and 150T  with the global 

mapping function as a reference (second row). 

As shown in Figure 4, when α = 0 , the local enhancement result is the same as the global 
enhancement result in Figure 3(a). Thus, the local contrast is not enhanced. This is because the local 
mapping functions turn to coincide with the global mapping function. As the value of α  gradually 
increases, the local mapping functions become different from the global mapping function, which 
results in a more enhanced local contrast. We empirically set α = 1  in the later experiments. 
Compared with the global enhancement result, local enhancement results look unnatural and the 
noise in homogeneous regions also emerges. 

3.3. Optimized Enhancement 

As described above, the global enhancement result improves the contrast of the input image 
without considering the characteristics of the input area. Thus, the contrast enhancement 
performance is limited. On the contrary, the local enhancement result shows much better 
performance on the local contrast improvement, but it looks unnatural and makes the noise emerge 
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in homogeneous regions. Since the performance of global enhancement and local enhancement have 
complementary characteristics, the optimized enhancement is expected to combine the merits of both 
global and local enhancements. To achieve this goal, the optimized enhancement result Y  has to 
make a trade-off between two objectives: 1) the overall brightness variation should follow that of the 
global enhancement result and 2) the local contrast should follow that of the local enhancement result 
[5]. These two objectives are expressed as: 

′ = +
′ ′ ′− = − +

1) :
2) : ( ). / ( ). /

G G

L L L L

Y Y E
Y Y Y c Y Y Y E

 (19) 

where ′Y  is the desired image, ′Y  is the set of average values of sub-blocks in ′Y , LY  is the set of 

average values of sub-blocks in LY , c  is a constant and is defined as the contrast parameter, GE  

and LE  are the lexicographically ordered sets of difference values in the condition of global 
brightness and local contrast similarity, and the operator . /  indicates that the corresponding 
elements of the two sets are divided separately. The goal is to find a solution that can simultaneously 
minimize GE  and LE . Moreover, notice that the variation ranges of GE  and LE  are not of the same 
magnitude. The expression of the second objective is rewritten by the equation below.  

′ ′ ′ ′− = − ∗ +( ). ( . / )L L L LY Y c Y Y Y Y E  (20) 

Where ′ ′= ∗.L LE E Y  
In this scenario, the operator ∗.  indicates that the corresponding elements of the two sets are 
multiplied separately. Therefore, the goal should be changed to find a solution that can 
simultaneously minimize GE  and ′LE . This is a bi-criteria optimization problem, and, in this paper, 
the square of the Frobenius norm is used to compute the solution below.  

λ
′

′ ′ ′ ′= − + − − − ∗
22

arg min ( ) ( ). ( . / )G L L LF FY
Y Y Y Y Y c Y Y Y Y  (21) 

where λ  is a regularization parameter and varies over ) ∞0, . The optimized enhancement result 

obtained by λ = 0  is equal to the global enhancement result. Nevertheless, as λ  increases to infinity, 
it turns to resemble the local enhancement result. Therefore, a different optimized enhancement 
result is obtained according to λ  and c . Considering the region characteristics of the input image, 
larger λ  and c  are needed for the detailed regions to get local contrast enhanced, but smaller λ  
and c  are more suitable for the homogeneous regions. Thus, λ  and c  should be a region with 
adaptive variables and should be represented as the component of { }λ= ≤ ≤ ≤ ≤ ( , ) 1 ,1m n m M n N  

and { }= ≤ ≤ ≤ ≤( , ) 1 ,1C c m n m M n N  instead of a constant. Moreover, notice that the value of ′Y  

is unknown and the desired image ′Y  satisfies the objective functions in Equation(18). We assume 
that the average value of the desired image is approximately equal to that of the global enhancement 
image ′ ≈( )GY Y . Then Equation (20) is rewritten as the formula below. 

′
′  ′ = − + ∗ − − ∗ − ∗ 

22
arg min . ( ) . ( ). ( . / )G G L L G LF FY

Y Y Y Y Y C Y Y Y Y  (22) 

The optimal solution of Equation (21) is shown below.  

 = + + + ∗ − ∗ ∗ + 1 1  . / ( ) . ( ). ( . / ) . . / ( )G G L L G LY Y Y C Y Y Y Y  (23) 

where 1  is the ×M N  one matrix. As shown in Equation (22), the first term indicates that the 
optimized enhancement result resembles the global enhancement result, and the second term adds 
the weighted local contrast of the local enhancement result to the average value of the global 
enhancement result. Therefore, based on the proposed method, the brightness variation of the global 
enhancement result and the local contrast of the local enhancement result are merged into the 
optimized enhancement result. It is clear that the characteristics of the optimized enhancement result 



Remote Sens. 2019, 11, 849 10 of 21 

 

are related to the values of   and C . In this paper, C  and   are adaptively determined based on 
the edge information of the input image. The edge information ∆  is first computed by using the 
Sobel operator and then is linearly mapped to the same dynamic range of the output image. The value 
of each element in   and C  are defined to be positively correlated with the corresponding value 
of edge information and are computed by the equation below. 

 
λ= ×∆

= ∆ − + ∆
 0

0 0. / (2 2 )C c c
 (24) 

where λ0  and 0c  are user-defined parameters and are empirically set as 0 0.1λ =  and 0 2c =  in 
the later experiments. 

 

(b)(a) (c)  

Figure 5. (a) is the map of the edge information ∆ , (b) is the optimized enhancement result Y , and 
(c) is the map of the edge information of Y . 

Figure 5 shows the map of edge information ∆ , the optimized enhancement result Y , and the 
map of edge information of Y . All these edge information maps are computed by applying the Sobel 
operator to the corresponding images and the values are non-negative. It can be clearly seen from the 
two edge information maps so that the edge information in Figure 5(c) looks much clearer than that 
in Figure 5(a). Besides this, the pixels containing edge information have the same coordinates in these 
two edge information maps. This indicates that the enhancement result of our proposed method can 
preserve and enhance the edge information of the original image. In addition to that, for the detailed 
regions, the edge information in Figure 5(c) is more abundant than that in Figure 5(a). In addition, 
for the homogeneous regions, the edge information in Figure 5(c) is similar to that in Figure 5(a). This 
indicates that the proposed method is able to adaptively enhance the contrast in detailed regions and 
keep the contrast in homogeneous regions unchanged. For a better understanding of our proposed 
method, a brief pseudo code of the proposed method is given as follows. 

 
Algorithm 1: Optimized Contrast Enhancement Method 
Input: original infrared image X  
Output: enhanced image Y  
1. Pre-process X  to be the 8-bit image 
2. Calculate the 2D histogram H  of image X  based on Equation (2), the parameter r  
determines the size of the neighbor region 
3. Obtain the clipped 2D histogram ∗H  by clipping H  and redistributing the exceeded pixels, 
normalize ∗H , the clip point is determined by the parameter β  
4. Calculate the global mapping function GT  based on the cumulative distribution functions of 

∗H  and the desired uniformly distributed 2D histogram Ĥ  using Equation (10) 
5. Map the image X  to the global enhancement result GY  using Equation (11) 
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6. Construct the desired local histogram ˆ
iH  based on the Gaussian distribution probability 

density function using Equation (13) 
7. Calculate the original local mapping function ′iT  based on the cumulative distribution 

functions of iH  and the desired local 2D histogram ′
ˆ

iH  using Equation (15) 
8. Solve the bi-criteria optimization function in Equation (16), obtain the optimal local mapping 
function iT , α  is introduced to be a regularization parameter 

9. Map the image X  to the local enhancement result LY  using Equation (18) 
10. Calculate   and C  based on Equation (24), λ0  and 0c  are the introduced parameters, 
∆  is computed by applying the Sobel operator to X  
11. Solve the bi-criteria optimization function in Equation (22), obtain the optimized contrast 
enhancement result Y ,   , and C  are the regularization parameter set and the contrast 
parameter set 
12. Return Y  

4. Experimental Results and Discussion 

In this section, experiments are conducted to evaluate the performance of the proposed method 
and the results were compared with those of three LCE methods: BCCE, ABMHE, and LGGSF. All 
these methods are applied to enhance the contrast of six different infrared images, which are captured 
by a cooled mid-wave infrared camera. The resolution of these images are ×320 256  and the pre-
processed 8-bit images are shown in Figure 6 as a reference. All these experiments are performed on 
a PC with Intel(R) Core(TM) i7 CPU(3.40GHz) and 16.00GB RAM using MATLAB on a Windows 10 
operation system. 

(a) (b) (c)

(d) (e) (f)  
Figure 6. The pre-processed infrared images: (a) Hills (b) Buildings (c) Sky (d) Gate (e) Students (f) 
Trees. 

4.1 Parameter Setting 

There are five parameters introduced in our proposed method. For these parameters, the values 
we chose are given in the above section. In this paper, we conduct a further discussion on the value 
set. The parameter r  determines the size of the neighbor region when calculating the 2D histogram. 
A larger value of r  means more neighbor pixels are taken into account and also corresponds to the 
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higher computational complexity. Thus, we set = 2r  in our proposed method. β  is introduced to 
reduce the over-enhancement of the global enhancement result in Section 3.1. The value of β  is 

recommended to be set within the range of   0.1,1 . In our experiments, for the images with a 

resolution of ×320 256 , we set β = 0.2 . For other images with higher resolution, a larger β  value 
is recommended. As for the parameter α , the effect of different α  values on the local enhancement 
results in Section 3.2 can be seen in Figure 4. A larger value of α  means more local contrast is 
enhanced. In the meantime, the noise in the homogeneous regions is also enhanced. Thus, we set 
α = 1  in our proposed method to make a trade-off between the local contrast enhancement and the 
noise amplification. The parameters λ0  and 0c  are introduced to determine the regularization 
parameter set   and the contrast parameter set C  based on the edge information ∆ . As discussed 
before, when the value of   approaches zero, the optimized enhancement result tends to keep the 
brightness variation of the global enhancement result. On the contrary, if the value of   increases 
to infinity, the optimized enhancement result turns to keep the local contrast of the local enhancement 
result. Considering the noise suppression, we set λ =0 0.1  in our experiments. If more local contrast 

enhancement is required, λ0  can be set to a larger value. From the definition of C  in Equation (24), 

it is clear that the values of the components in C  are within the range of   00,c . Thus, the value of 

0c  represents the maximum contrast enhancement ratio. In our experiments, we empirically set 

=0 2c  to obtain the proper contrast enhancement. 

4.2. Qualitative Evaluation 

The enhancement results of the reference images in Figure 6 using BCCE, ABMHE, LGGSF, and 
the proposed method are shown in Figure 7 to Figure 12. The numbers of horizontal and vertical 
divisions of the image for BCCE and LGGSF are set to be = =1 2 7k k . The clip limit parameter and 
local contrast enhancement factor for BCCE are set as β = 0.01  and α = 1.2 . The local contrast 
enhancement factor for LGGSF is set as α = 8 . For the ABMHE method, the block size is set to be 

×64 64 . The horizontal and vertical steps are set to be one-quarter of the block size.  
As shown in these figures, the intermediate global and local enhancement results are given 

together with the optimized result. For each test image, the final enhancement result of our proposed 
method is the optimized result of the intermediate enhancement results. It can be seen that the global 
enhancement results improve the visual quality with no artifacts, but the local contrast is not well 
enhanced. In the local enhancement results, the enhanced local contrast is enhanced but looks 
unnatural and the noise in homogeneous regions also emerges. The optimized results adaptively 
combine the merits of both global and local enhancement results. Therefore, the results improve the 
visual quality with an enhanced local contrast and no artifacts. 

As shown in Figure 7, we can clearly find that the edge information of the buildings in the result 
of the proposed method and BCCE looks clearer than the others. The result of ABMHE causes over-
enhancement in the trees of the image. However, in the result of LGGSF, more details of the trees and 
mountain are lost. In the region marked by the red rectangle, BCCE amplifies the noise and ABMHE 
causes blocking artifacts. 

In Figure 8, as shown in the region marked by the red rectangle, the result of LGGSF shows over-
enhancement artifacts and that of ABMHE lost some details in the darker area. It can be observed 
that there is brightness distortion in the enhancement results of BCCE, ABMHE, and LGGSF. Once 
again, BCCE and the proposed method produces clearer visual quality than ABMHE and LGGSF. 

In Figure 9, over-enhancement artifacts appear in the homogeneous regions of the results of 
BCCE and ABMHE. The noise is also amplified in the result of BCCE. We can also observe that the 
tower crane marked by the red rectangle looks fuzzy in the results of BCCE, ABMHE, and LGGSF. 
The result of the proposed method looks more natural and clearer than that of the others.  
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(a) (b) (c)

(d) (e) (f)  
Figure 7. The enhancement results of Figure 6(a): (a) BCCE. (b) ABMHE. (c) LGGSF. (d) Global. (e) 
Local. (f) Optimized. 

 

(b)

(d)

(a) (c)

(e) (f)  
Figure 8. The enhancement results of Figure 6(b): (a) BCCE. (b) ABMHE. (c) LGGSF. (d) Global. (e) 
Local. (f) Optimized. 
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(b)

(f)

(a) (c)

(d) (e)  
Figure 9. The enhancement results of Figure 6(c): (a) BCCE. (b) ABMHE. (c) LGGSF. (d) Global. (e) 
Local. (f) Optimized. 

In Figure 10, the result of BCCE appears to have severe brightness distortion in the region 
marked by the red rectangle and other homogeneous regions. This distortion also appears in the 
results of ABMHE and LGGSF. In addition, LGGSF also causes artifacts in some homogeneous 
regions. The enhancement result of the proposed method preserves the naturalness of the original 
image and gives better local contrast enhancement with brightness distortion. 

In Figure 11, it is clear that the people in the region marked by the red rectangle of the proposed 
method are clearer than that of the BCCE, ABMHE, and LGGSF. Additionally, the result of the 
proposed method produces more legible edge information than the other methods. 

In Figure 12, there are no large homogeneous regions in the scene. Thus, the brightness distortion 
is not apparent in the results of BCCE, ABMHE, and LGGSF. However, the enhancement results of 
ABMHE and LGGSF still look unnatural at the regions of the trees. We can see more details lost in 
that area. BCCE performs best in terms of local contrast enhancement. The proposed method is 
slightly inferior to BCCE. As observed in the region marked by the red rectangle, the objects in the 
results of ABMHE and LGGSF look fuzzy. BCCE and the proposed method give better visual quality. 
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(d)

(b)(a) (c)

(e) (f)  
Figure 10. The enhancement results of Figure 6(d): (a) BCCE. (b) ABMHE. (c) LGGSF. (d) Global. (e) 
Local. (f) Optimized. 

 

(b)

(d)

(a) (c)

(e) (f)  
Figure 11. The enhancement results of Figure 6(e): (a) BCCE. (b) ABMHE. (c) LGGSF. (d) Global. (e) 
Local. (f) Optimized. 
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(b)

(d)

(a) (c)

(e) (f)  
Figure 12. The enhancement results of Figure 6(f): (a) BCCE. (b) ABMHE. (c) LGGSF. (d) Global. (e) 
Local. (f) Optimized. 

4.3. Quantitative Evaluation 

For further evaluation, some objective assessment metrics are employed to numerically evaluate 
the performance of the proposed method. The metrics used in this paper are the measure of 
enhancement by entropy (EMEE) [39], structural similarity (SS) [40], no-reference structural 
sharpness (NRSS) [41], and the lightness order error (LOE) [38]. 

EMEE is defined based on the concept of entropy, which calculates the average ratio of 
maximum to minimum intensities in each block in decibels. The definition of EMEE is shown below. 

αα
= =

=
+ +∑∑

1 2
max max
, ,

min min
1 11 2 , ,

1( ) ( ) ln( )
k k

k l k l

k l k l k l

I I
EMEE I

k k I c I c
 (25) 

where 1k  and 2k  are the numbers of blocks the given image I  is divided in the horizontal and 

vertical direction, max
,k lI  and min

,k lI  are, respectively, the maximum and minimum intensity of the 
block ( , )k l , α  is an additional parameter, and c  is a small constant to avoid dividing by zero. 
Generally, the larger EMEE indicates better contrast of the given image. In this paper, we set α = 0.2 , 
= 0.0001c , and ×8 8  for the block size.  

SS is based on the assumption that natural images are highly structured and is defined as the 
equation below.  

σ

σ σ

+
=

+
,( , ) o e

o e

I I
o e

I I

c
SS I I

c
 (26) 

where oI  and eI  are, respectively, the original image and enhanced image, σ ,o eI I  is the covariance 

of oI , and eI , σ
oI , and σ

eI  are the corresponding standard deviation, c  is a small constant to 

avoid dividing by zero, and σ ,o eI I is estimated by the equation below. 
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σ µ µ
=

= − −
− ∑,

1

1 ( ( ) )( ( ) )
1o e o e

N

I I o I e I
i

I i I i
N

 (27) 

where N  is the number of pixels in the images and µ
oI  and µ

eI  are, respectively, the mean 

intensity of oI  and eI . It is clear that SS indicates the structural similarity of the enhanced image 
when compared to the original image. The larger SS means the enhanced image is more close to the 
original image in terms of structure. 

NRSS is defined based on the well-known SSIM (structural similarity index measurement) [42] 
to indicate the structural sharpness of the given image, which is defined by the equation below. 

 
=

= − ∑ ( )

1

1( ) 1 ( , )F II

K
GG

i i
i

NRSS I SSIM B B
K

 (28) 

where IG
iB  is one of the K  overlapped sub-blocks with higher variations in IG , IG  is the gradient 

image of the given image I  and is calculated by applying Sobel operator to the given image, and
( )F  is the 2D Gaussian-blurred function. Large NRSS means that the given image looks clear and is 

rich in details. In our experiments, the block size is set to be ×32 32  and the step is set to half the 
block size, and K  is set to be half of the total number of the overlapped sub-blocks. 

LOE is defined based on the lightness order error between the original image and the enhanced 
image. The definition of LOE is shown below.  

= =

= =


=


 = ⊕

  ≥

= 
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∑∑

∑∑
1 1

1 1

1 ( , )

( , ) ( ( ( , ), ( , )) ( ( , ), ( , )))

1
( , )

0

M N

i j

M N
D D D D
o o e e

m n

LOE RD i j
MN

RD i j U I i j I m n U I i j I m n

for x y
U x y

else

 
(29) 

where ( , )U x y  is the unit step function, ⊕  is the exclusive or operator, and D
oI  and D

eI  are, 

respectively, the down-sampled version of oI  and eI  to reduce the computational complexity. The 
ratio between the size of the original image and that of the down-sampled image is set as = 16r  in 
our experiments. For the better naturalness preservation of the original image, the LOE value of the 
enhanced result is expected to be smaller. 

Table 1. The values of EMEE, SS, NRSS, and LOE of the enhanced result obtained by BCCE, ABMHE, 
LGGSF, and the proposed method. 

Metrics Methods 
Test Images in Figure 6 

Average 
 (a)  (b)  (c)  (d)  (e)  (f) 

EMEE 

Original 0.2190 0.2560 0.1442 0.1569 0.1534 0.2482 0.1963 
BCCE 0.5789 1.0363 0.5245 0.5367 0.5252 1.1947 0.7327 

ABMHE 1.3581 2.9490 1.8895 1.0964 0.9739 2.3617 1.7714 
LGGSF 0.1955 1.7445 0.1497 1.0375 0.3348 1.2646 0.7878 

Proposed 0.3172 0.9685 0.4910 1.0302 1.0707 1.6823 0.9267 

SS 

Original 1  1 1 1 1 1 1 
BCCE 0.8409 0.8690 0.8728 0.8193 0.7214 0.7821 0.8176 

ABMHE 0.8449 0.9446 0.8966 0.8455 0.7213 0.7894 0.8404 
LGGSF 0.9151 0.8481 0.9857 0.7756 0.8425 0.6577 0.8375 

Proposed 0.9339 0.9689 0.9866 0.9761 0.9761 0.9028 0.9574 

NRSS 

Original 0.8248 0.7536 0.8511 0.7534 0.8160 0.7779 0.7961 
BCCE 0.9292 0.9069 0.9392 0.8782 0.8645 0.9252 0.9072  

ABMHE 0.8375 0.7477 0.8397 0.7716 0.7641 0.7780 0.7898 
LGGSF 0.8829 0.8365 0.8770 0.8426 0.7933 0.8474 0.8466 
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Proposed 0.9520 0.8631 0.9365 0.9141 0.9307 0.9033 0.9166 

LOE 

Original 0 0 0 0 0 0 0 
BCCE 59.15 39.71 50.40 75.85 85.51 55.51 61.02 

ABMHE 36.54 24.64 52.44 69.38 82.93 40.95 51.15 
LGGSF 30.86 45.24 9.97 76.26 58.41 83.01 50.63 

Proposed 9.81 10.69 8.68 11.29 13.61 9.41 10.58 
As shown in Table 1, the highest values of EMEE, SS, NRSS, and the lowest values of LOE are 

marked in bold. As for the EMEE values, ABMHE gives almost the highest values for the test images 
among the four methods. However, ABMHE also produces over-enhancement artifacts in some 
regions, as shown in Figures 7 to 12. The BCCE treats all six images without discrimination. Thus, the 
noise in the homogeneous regions are amplified, as shown in Figure 7(a) and Figure 9(a). LGGSF and 
the proposed method give relatively lower EMEE values for Figure 6(a) and Figure 6(c) and higher 
values for the other images. However, LGGSF may cause over-enhancement or contrast reduction in 
some regions, such as the regions in Figure 7(c) and Figure 8(c). This situation also appears in the 
enhanced result of ABMHE, which is caused by the sub-block classification. The proposed method 
performs better in this regard without over-enhancement or contrast reduction. Comparison of SS 
values shows that the proposed method outperforms the other methods with the highest values. This 
indicates that the structure of the enhancement results of the proposed method is most similar to the 
original images. Comparison of NRSS values shows that BCCE and the proposed method gives 
higher values than ABMHE and LGGSF. This is also demonstrated by the clearer enhancement results 
in Figures 7 to 12. The clearer appearance mainly benefits from the local enhancement mechanism of 
BCCE and the proposed method. Comparison of LOE values shows that the proposed method 
performs best on naturalness preservation than the other three methods. The higher LOE values of 
BCCE, ABMHE, and LGGSF are caused by the block-based principle and the neglect of global 
characteristics. All values of these metrics demonstrate that the proposed method outperforms the 
other methods in terms of structural similarity, local contrast enhancement, and naturalness 
preservation. 

These four methods are also applied to another 10 infrared images shown in Figure 13 for the 
quantitative evaluation. The values of the objective assessment metrics are given in Table 2. 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)  
Figure 13. Ten infrared images for quantitative evaluation. 

In Table 2, it can be seen that the proposed method gives lower EMEE values for the images that 
contain more homogeneous regions or fewer detail regions, which is the same as those EMEE values 
in Table 1. The NRSS values of the proposed method are close to those of BCCE and higher than those 
of ABMHE and LGGSF. Comparison of SS and LOE values shows that the proposed method always 
gives the highest SS values and lowest LOE values. This means the proposed method has better 
performance than the other methods for preserving the naturalness and structure of the original 
images. All these quantitative evaluation values demonstrate that the proposed method has better 
performance on adaptive contrast enhancement, structural similarity, visual quality improvement, 
and naturalness preservation.  
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Table 2. The values of EMEE, SS, NRSS, and LOE of the enhanced results obtained by applying the 
four methods to the 10 infrared images. 

Metrics Methods 
Test Images in Figure 13 

Average 
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

EMEE 

Original 0.2017 0.1718 0.1910 0.2201 0.2009 0.2112 0.2313 0.1584 0.1704 0.2252 0.1982 
BCCE 0.7699 0.5290 0.4959 0.5346 0.6480 0.7209 0.9094 0.4127 0.5627 1.1605 0.6744 

ABMHE 1.4387 1.4713 2.3195 2.2688 2.1855 1.4585 0.8927 1.6636 1.0797 1.5135 1.6292 
LGGSF 0.3383 0.1915 0.6501 0.8170 1.7540 0.6360 0.7267 0.5487 0.7851 0.9432 0.7391 

Proposed 2.1975 0.1959 0.3858 0.2545 1.6005 3.0638 6.4672 0.3221 0.5787 2.0923 1.7158 

SS 

Original 1 1 1 1 1 1 1 1 1 1 1 
BCCE 0.8629 0.8657 0.8617 0.9225 0.7657 0.7201 0.8058 0.7947 0.7437 0.7913 0.8134 

ABMHE 0.9231 0.8696 0.7928 0.9282 0.7832 0.6536 0.8687 0.8628 0.7741 0.8376 0.8294 
LGGSF 0.9417 0.9559 0.8061 0.8775 0.6383 0.7552 0.8582 0.7863 0.6239 0.8463 0.8089 

Proposed 0.9845 0.9660 0.9356 0.9628 0.9462 0.8621 0.9672 0.9755 0.9352 0.9324 0.9468 

NRSS 

Original 0.8232 0.8274 0.8111 0.7829 0.8500 0.7712 0.8255 0.7396 0.7721 0.8229 0.8026 
BCCE 0.9424 0.9367 0.9647 0.9323 0.9508 0.9451 0.9464 0.8733 0.8794 0.9214 0.9293 

ABMHE 0.8199 0.8322 0.8382 0.8016 0.8622 0.8444 0.8277 0.7380 0.7604 0.8168 0.8141 
LGGSF 0.8519 0.8914 0.8857 0.8614 0.8783 0.8748 0.8567 0.8112 0.7855 0.8257 0.8523 

Proposed 0.9212 0.9629 0.9410 0.9211 0.9641 0.9417 0.9343 0.8648 0.9285 0.9085 0.9288 

LOE 

Original 0 0 0 0 0 0 0 0 0 0 0 
BCCE 45.40 57.08 46.63 40.82 63.08 45.72 60.36 66.37 86.63 57.86 57.00 

ABMHE 49.70 41.16 45.99 35.26 54.89 44.58 47.94 48.20 76.66 46.59 49.10 
LGGSF 24.49 29.65 36.88 39.47 59.29 35.55 47.83 61.39 92.27 41.38 46.82 

Proposed 7.24 11.31 6.95 7.34 14.18 8.56 15.53 8.38 10.67 10.40 10.06 
The average computation time for the four methods to process the test images in Figure 6 and 

Figure 13 are given in Table 3. As shown in the table, the average computation time of BCCE is lower 
than the other methods. For LGGSF, the sub-block classification and labeling lead to more time 
consumption than BCCE. In our proposed method, the utilization of the histogram specification and 
the local contrast enhancement part require more computation time than LGGSF and BCCE. In 
ABMHE, the overlapped sub-blocks and the sub-block search operations make it the most time-
consuming method among the four methods. 

Table 3. The average computation time in seconds of the four methods on the test images. 

Method BCCE ABMHE LGGSF Proposed 
Time 0.0865 2.4670 0.1347 0.8959 

5. Conclusion 

In this paper, we proposed an optimized contrast enhancement method for the visual quality 
improvement of infrared images. The proposed method produces enhanced images by making an 
optimal compromise between the global and local enhancement results that consider the edge 
information of the original image. In the proposed method, based on the 2D histogram of the original 
image, the global and local enhancement results are obtained by applying histogram specification 
globally and locally. Then, an objective function is constructed with global brightness and local 
contrast constrained conditions. The desired image is obtained by finding an analytical solution for 
the quadratic optimization problem. The regularization parameter set   and contrast parameter set 
C  for the optimization function are adaptively determined by the edge information of the original 
image. Experiments are conducted for the qualitative and quantitative assessment of the proposed 
method with three block-based methods for comparison. Experimental results demonstrate that the 
proposed method produces better visual quality improvement in terms of structural similarity, 
naturalness preservation, and local contrast enhancement. 
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